Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways
نویسندگان
چکیده
OBJECTIVE Embryonic germ (EG) cells are the results of reprogramming primordial germ cells (PGC) in vitro. Studying these cells can be of benefit in determining the mechanism by which specialized cells acquire pluripotency. Therefore in the current study we have tried to derive rat EG cells with inhibition of transforming growth factor-β (TGFβ) and mitogen-activated protein kinase kinase (MEK) signaling pathways. MATERIALS AND METHODS In this experimental study, rat PGCs were cultured under feeder free condition with two small molecules that inhibited the above mentioned pathways. Under this condition only two-day presence of stem cell factor (SCF) as a survival factor was applied for PGC reprogramming. Pluripotency of the resultant EG cells were further confirmed by immunofluorescent staining, directed differentiation ability to neural and cardiac cells, and their contribution to teratoma formation as well. Moreover, chromosomal stability of two different EG cells were assessed through G-banding technique. RESULTS Formerly, derivation of rat EG cells were observed solely in the presence of glycogen synthase kinase-3 (GSK3β) and MEK pathway inhibitors. Due to some drawbacks of inhibiting GSK3β molecules such as increases in chromosomal aberrations, in the present study we have attempted to assess a feeder-free protocol that derives EG cells by the simultaneous suppression of TGFβ signaling and the MEK pathway. We have shown that rat EG cells could be generated in the presence of two inhibitors that suppressed the above mentioned pathways. Of note, inhibition of TGFβ instead of GSK3β significantly maintained chromosomal integrity. The resultant EG cells demonstrated the hallmarks of pluripotency in protein expression level and also showed in vivo and in vitro differentiation capacities. CONCLUSION Rat EG cells with higher karyotype stability establish from PGCs by inhibiting TGFβ and MEK signaling pathways.
منابع مشابه
The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملCo-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells
Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells. Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence p...
متن کاملA vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells
Objective(s):To culture thein vitro mouse embryonic stem cells (mESCs) and to direct their differentiation to germ-line cells; in present study we used a vector backbone containing the fusion construct Stra8-EGFP to select differentiated ES cells that entered meiosis. Retinoic acid was used to differentiate embryonic stem cells to germ cells. Materials and Methods: A fragment of Stra8 gene pr...
متن کاملMEK and TGF-beta Inhibition Promotes Reprogramming without the Use of Transcription Factor
The possibility of replacing the originally discovered and widely used DNA reprogramming transcription factors is stimulating enormous effort to identify more effective compounds that would not alter the genetic information. Here, we describe the generation of induced pluripotent stem cells (iPSc) from head-derived primary culture of mouse embryonic cells using small chemical inhibitors of the ...
متن کاملبررسی بیان ژن Tsga10 در فرایند تمایز سلولهای بنیادی جنینی موشی به سلولهای ژرمینال در محیط آزمایشگاهی
Background: About 15% of couples have fertility problems and male factor in fertility accounts for half of the cases. In vitro generation of germ cells introduces a novel approach to male infertility and provides an effective system in gene tracking studies, however many aspects of this process have remained unclear. We aimed to promote mouse embryonic stem cells (mESCs) differentiation into ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2015